Formation of Alkyl Radicals by Photoionization of Alcohol Radicals Trapped in Glassy Matrices

Masaru Shiotani and Claude Chachaty

Faculty of Engineering, Hokkaido University, Sapporo 060
Service de Chimie Physique, Centre d'Etudes Nucleaires de SACLAY,
B.P. n° 2 (91)-Gif-sur-Yvette, France
(Received October 30, 1972)

Experiments were carried out in order to elucidate the formation mechanism of C_2H_5 radicals formed by the UV irradiation (250< $\lambda<$ 350 nm) of $CH_3\dot{C}HOH$ radicals. The kinetics of the formation of the C_2H_5 radical was examined by means of ESR in neutral, acidic, and alkaline ethanol glasses at 77 K. The initial rate of the formation of C_2H_5 was nearly independent of the concentration of added acid (H_2SO_4), but it decreased sharply with that of added NaOH. Moreover, the limiting yield of C_2H_5 decreased with the concentrations of both the acid and the base. Our experimental results suggest that the C_2H_5 radicals are formed by this reaction:

 $C_2H_5OH_2{}^+ + e^- \longrightarrow C_2H_5 \cdot + H_2O$ The $C_2H_5OH_2{}^+$ ion and the electron result from the photoionization of $CH_3\dot{C}HOH$ radicals according to these reactions:

$$\begin{array}{cccc} CH_3\dot{C}HOH \stackrel{h\nu}{\longrightarrow} (CH_3CHOH)^+ + e^- \\ (CH_3CHOH)^+ + C_2H_5OH \longrightarrow CH_3CHO + C_2H_5O{H_2}^+ \end{array}$$

The free radicals produced by the abstraction of α hydrogen atoms from aliphatic alcohols have an absorption band between 200 and 350 nm. $^{1,2)}$ Under irradiation in this wavelength range, RCHOH radicals are photolyzed, giving rise to R \cdot and/or RCH $_2$ alkyl radicals. $^{3-6)}$ The mechanism of the formation of RCH $_2$ radicals has not yet been definitely established, however.

By the photolysis of the CH₃ĊHOH radical (generated by the γ -irradiation of ethanol and trapped in the glassy state), which has been the most extensively studied,³⁻⁶⁾ both ĊH₃ and Ċ₂H₅^{3,5)} are produced. The former disappears quickly upon hydrogen abstraction, whereas C₂H₅· reaches a stationary concentration. Moreover, it has been calculated⁷⁾ and confirmed experimentally⁸⁾ that CH₃ĊHOH trapped in polar solids may be photoionized in the near UV region, since its ionization potential is lowered from 7 eV in the gas phase to 2.5 eV in the solid state (2.5 eV corresponds to 495 nm).

The present work has been designed to show, using the example of CH₃CHOH, that the photolytic formation of RCH₂· from RCHOH radicals trapped in glassy alcohols is a consequence of the photoionization rather than of the reaction of excited hydroxyalkyl radicals on the substrate, as has been suggested.⁹⁾

Experimental

The ethanol was purified by fractional distillation. Neutral, acidic, and alkaline samples of ethanol containing 5% of water were degassed in "spectrosil" silica tubes and then γ -irradiated at 77 K in the glassy state, using a ⁶⁰Co source and a dose of 8×10^{19} eV ml⁻¹.

After irradiation, the samples were bleached by visible light to remove the trapped electrons. The ESR spectra were then recorded with a "STRAND Labs" 601 BX Spectrometer operating at 9.3 GHz. The concentration of radicals was determined by double integration and by comparison with a reference sample of pure glassy ethanol, taking G (CH₃CHOH)=8⁶) after bleaching. The UV irradiation was

carried out by focusing the output of a 500 W mercury are (Phillips SP. 500) onto the sample placed in a liquid-nitrogen Dewar vessel located in the cavity. Two intensities of illumination were used: 10^{17} quanta cm⁻³ s⁻¹ and 2×10^{16} quanta cm⁻³ s⁻¹ (250 nm< $\lambda<$ 400 nm).

Results and Discussion

The rate of the formation and the limiting yield of C_2H_5 · from UV-irradiated $CH_3\dot{C}HOH$ produced by γ irradiation have been studied in neutral ethanol, as well as in acidic and alkaline media, as a function of the concentrations of the added H_2SO_4 and NaOH.

During photolysis the overall concentration of radicals (CH₃CHOH and C₂H₅·) was determined by integration, as has been indicated previously.

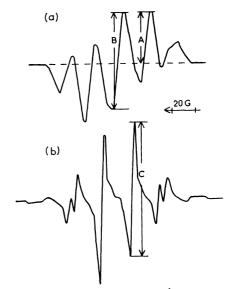


Fig. 1. a) ESR spectrum of CH₃CHOH radical observed at 77 K after γ irradiation of pure C₂H₅OH and subsequent bleaching to trapped electrones.

b) Spectrum of C_2H_5 observed at 77 K after UV photolysis of $CH_3\dot{C}HOH$.

The relative concentration of radicals was determined by measureing the amplitude of Bands A and B for CH₃CHOH (Fig. 1a) and of Band C for C₂H₅. (Fig. 1b). These amplitudes were correlated with the true concentration of radicals by calibration with the spectra of both radicals obtained separately, and then integrated.

The variations in the concentrations of the CH_3 - $\dot{C}HOH$ and C_2H_5 · radicals with the time of UV irradiation are represented in Figs. 2 and 3.

In the case of neutral ethanol, the signal amplitude of CH₃CHOH falls to an undetectable level after 5 to 15 min of illumination, the rate of decrease depending on the UV-light intensity, while the concentration of C₂H₅· passes through a maximum and decays slowly by recombination after the complete consumption of CH₃CHOH. The logarithmic plot of CH₃CHOH against the time of illumination is linear the slope being pro-ortional to the intensity of UV irradiation, indicating a first-order decay of this radical (Fig. 4). This means that the optical density of the CH₃CHOH radical may be very small. Under the same conditions, the rate of the formation of C₂H₅· and its limiting

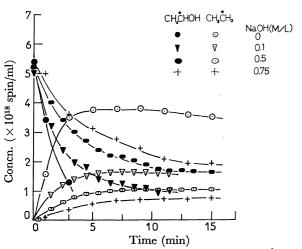


Fig. 2. Variation of the concentration of $\text{CH}_3\dot{\text{C}}\text{HOH}$ and $\text{C}_2\text{H}_5\cdot$ radicals in the course of UV photolysis ($I=2\times 10^{16}$ quanta cm⁻³s⁻¹): neutral and alkaline matrices.

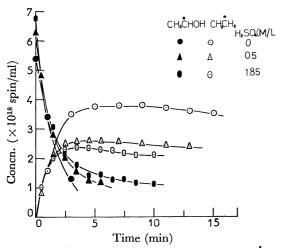


Fig. 3. Variation of the concentration of $\mathrm{CH_3\dot{C}HOH}$ and $\mathrm{C_2H_5}$ radicals in the course of UV photolysis ($I=2\times10^{16}$ quanta cm⁻³s⁻¹): neutral and acidic matrices.

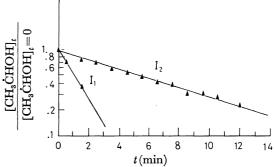


Fig. 4. Logarithmic plot of $[CH_3\dot{C}HOH]_t$ versus UV irradiation time, $[CH_3\dot{C}HOH]_t=0$ being the initial concentration. $I=10^{17}$ quanta cm⁻³ s⁻¹, $I_2=2\times10^{16}$ quanta cm⁻³ s⁻¹.

yield are drastically reduced as the concentration of NaOH is increased (Fig. 2). On the other hand, the initial rate of the formation of C_2H_5 is about the same in acidic and neutral media, while its limiting yield is lowered by the presence of H_2SO_4 .

In order to interpret these results, which are summarized in Figs. 5 and 6, the reaction scheme proposed in a previous paper⁸⁾ by one of the present authors has been somewhat modified as follows.

The photoionization of CH₃CHOH and the consecutive ion-molecule reactions are:

$$\begin{array}{ccc} \mathrm{CH_3\dot{C}HOH} & \stackrel{h\nu}{\longrightarrow} & (\mathrm{CH_3CHOH})^+ + \mathrm{e}^- & & (1) \\ (\mathrm{CH_3CHOH})^+ + \mathrm{C_2H_5OH} & & & \\ & \longrightarrow & \mathrm{C_2H_5OH_2}^+ + \mathrm{CH_3CHO} & & (2) \end{array}$$

An increase in the concentration of CH₃CHO has actually been observed in the course of the photolysis of CH₃CHOH.⁹⁾

The released electron can participate in the competitive reactions:

$$e^- + 2C_2H_5OH \longrightarrow$$

$$CH_3\dot{C}HOH + C_2H_5O^- + H_2$$

and/or

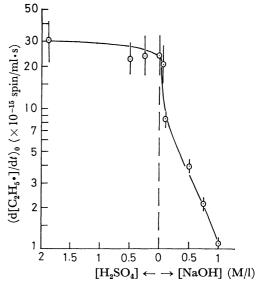


Fig. 5. Initial rate of formation of C₂H₅· as a function of H₂SO₄ and NaOH concentrations.

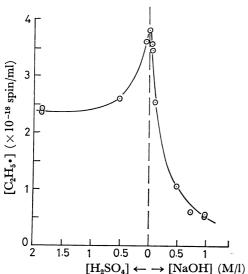


Fig. 6. Maximum yield of C₂H₅· as a function of H₂SO₄ and NaOH concentrations.

$$\begin{cases} e^{-} + C_{2}H_{5}OH \longrightarrow C_{2}H_{5}O^{-} + H \cdot \\ H \cdot + C_{2}H_{5}OH \longrightarrow CH_{3}\dot{C}HOH + H_{2} \end{cases}$$
(3)
$$e^{-} + C_{2}H_{5}OH_{2}^{+} \longrightarrow H_{2}O + C_{2}H_{5} \cdot$$
(4)

Reaction (3) is supported by the experimental finding that the CH₃CHOH radicals are formed by the decay of electrons formed when alkali metals are added to C₂H₅OH glass at 77 K,¹⁰ while Reaction (4) has been suggested by Yoshida *et al.*¹¹ However, in the present case, the rate of Reaction (4) is most likely larger than that of Reaction (3).

A reaction similar to (4) has been proposed by Symons et al.¹²⁾ to account for the formation of methyl and isopropyl radicals in γ -irradiated solutions of methanol and isopropanol in glassy acidic ice. It may be pointed out that Reaction (4) is energetically favourable, the electron affinity of H_2O^+ being markedly larger than the C–O bond energy (12.6 eV against 4 eV¹³⁾).

In the alkaline matrix, the $C_2H_5OH_2^+$ ions, precursors of $C_2H_5^-$, are scavenged by an excess of $C_2H_5O^-$ and/or OH^- ions:

$$\label{eq:c2H5O} C_2H_5O^- + C_2H_5OH_2^+ \longrightarrow 2C_2H_5OH$$
 and/or $\qquad \qquad (5)$

$$OH^- + C_2H_5OH_2^+ \longrightarrow C_2H_5OH + H_2O$$

CH₃CHOH being regenerated by Reaction (3). The failure to observe the ESR spectrum of the solvated electron, even in the alkaline medium may be attributed to its high quantum yield of untrapping by UV light.²⁾

It could be expected that, in the acidic matrix, the contribution of Reaction (4) would be enhanced by the increase in the concentration of $C_2H_5OH_2^+$. The decay in the yield of $C_2H_5^-$ as the concentration of H_2SO_4 is increased suggests that the electrons released by Reaction (1) are partially scavenged by HSO_4^- , producing $CH_3\dot{C}HOH$ radicals according to these reactions:

$$e^- + HSO_4^- \longrightarrow SO_4^{2-} + H \cdot$$
 (6)

$$H \cdot + C_2 H_5 OH \longrightarrow CH_3 \dot{C} H OH + H_2$$
 (7)

The hypothesis of an ionic contribution to the near-UV photolysis of hydroxyalkyl radials, trapped in glassy alcohols, seems, therefore, supported by the effect of added acids and bases presented here.

References

- 1) R. S. Alger, T. H. Anderson, and L. A. Weeb, J. Chem. Phys., **30**, 695 (1959).
- 2) A. Bernas, D. Grand, and C. Chachaty, Chem. Commun., 1970, 1667.
- 3) (a) B. N. Shelimov, N. B. Fok, and V. V. Voevodskii, *Kinet. Katal.*, **5**, 539 (1963). (b) B. N. Shelimov, N. B. Fok, and V. V. Voevodskii, *ibid.*, **5**, 1008 (1964).
- 4) (a) R. H. Johnsen, J. Phys. Chem., **65**, 2144 (1961). (b) R. H. Johnsen, *ibid.*, **67**, 681 (1963).
- 5) C. Chachaty and E. Hayon, J. Chim. Phys., 61, 1115, (1964).
- 6) C. Chachaty, Dr. Sc. Thesis, Univ. de PARIS, (1968), C.E.A. Report R 3537 (1969).
 - 7) Ye. I. Finkelshtein, Visokomol. Soyed., A, 9, 70 (1967).
- 8) C. Chachaty, A. Forchioni, and J. Desalos, C. R. Acad. Sci. Paris, C, 270, 449 (1970).
- 9) H. S. Judeikis and S. Siegel, *J. Chem. Phys.*, **43**, 3625 (1965).
- 10) J. E. Bennett, B. Mile, and A. Thomas, J. Chem. Soc. Ser., A, 1967, 1399.
- 11) H. Yoshida, M. Irie, O. Shimada, and K. Hayashi, J. Phys. Chem., 76, 3747 (1972).
- 12) D. R. G. Brimage, J. D. P. Cassel, J. H. Sharp, and M. C. R. Symons, *J. Chem. Soc.*, Ser. A, **1969**, 2619.
- 13) Y. I. Venenyev, L. V. Gurvich, V. N. Kondratiev, V. A. Medvedev, and Ye. L. Frankevich, "Bond Energies, Ionization Potentials and Electron Affinities," Edward Arnold Publisher, London (1966).